MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralidm Structured version   Visualization version   Unicode version

Theorem ralidm 4075
Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997.)
Assertion
Ref Expression
ralidm  |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ralidm
StepHypRef Expression
1 rzal 4073 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  A. x  e.  A  ph )
2 rzal 4073 . . 3  |-  ( A  =  (/)  ->  A. x  e.  A  ph )
31, 22thd 255 . 2  |-  ( A  =  (/)  ->  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph ) )
4 neq0 3930 . . 3  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
5 biimt 350 . . . 4  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ph  <->  ( E. x  x  e.  A  ->  A. x  e.  A  ph ) ) )
6 df-ral 2917 . . . . 5  |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  A. x  e.  A  ph ) )
7 nfra1 2941 . . . . . 6  |-  F/ x A. x  e.  A  ph
8719.23 2080 . . . . 5  |-  ( A. x ( x  e.  A  ->  A. x  e.  A  ph )  <->  ( E. x  x  e.  A  ->  A. x  e.  A  ph ) )
96, 8bitri 264 . . . 4  |-  ( A. x  e.  A  A. x  e.  A  ph  <->  ( E. x  x  e.  A  ->  A. x  e.  A  ph ) )
105, 9syl6rbbr 279 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph ) )
114, 10sylbi 207 . 2  |-  ( -.  A  =  (/)  ->  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph ) )
123, 11pm2.61i 176 1  |-  ( A. x  e.  A  A. x  e.  A  ph  <->  A. x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  issref  5509  cnvpo  5673  dfwe2  6981
  Copyright terms: Public domain W3C validator