MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raluz Structured version   Visualization version   GIF version

Theorem raluz 11736
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz
StepHypRef Expression
1 eluz1 11691 . . . 4 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
21imbi1d 331 . . 3 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
3 impexp 462 . . 3 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
42, 3syl6bb 276 . 2 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
54ralbidv2 2984 1 (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  cle 10075  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-neg 10269  df-z 11378  df-uz 11688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator