![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > regsep | Structured version Visualization version GIF version |
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
regsep | ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isreg 21136 | . . . 4 ⊢ (𝐽 ∈ Reg ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) | |
2 | sseq2 3627 | . . . . . . . 8 ⊢ (𝑦 = 𝑈 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) | |
3 | 2 | anbi2d 740 | . . . . . . 7 ⊢ (𝑦 = 𝑈 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
4 | 3 | rexbidv 3052 | . . . . . 6 ⊢ (𝑦 = 𝑈 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
5 | 4 | raleqbi1dv 3146 | . . . . 5 ⊢ (𝑦 = 𝑈 → (∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
6 | 5 | rspccv 3306 | . . . 4 ⊢ (∀𝑦 ∈ 𝐽 ∀𝑧 ∈ 𝑦 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
7 | 1, 6 | simplbiim 659 | . . 3 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → ∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
8 | eleq1 2689 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑧 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
9 | 8 | anbi1d 741 | . . . . 5 ⊢ (𝑧 = 𝐴 → ((𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
10 | 9 | rexbidv 3052 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
11 | 10 | rspccv 3306 | . . 3 ⊢ (∀𝑧 ∈ 𝑈 ∃𝑥 ∈ 𝐽 (𝑧 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈) → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈))) |
12 | 7, 11 | syl6 35 | . 2 ⊢ (𝐽 ∈ Reg → (𝑈 ∈ 𝐽 → (𝐴 ∈ 𝑈 → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)))) |
13 | 12 | 3imp 1256 | 1 ⊢ ((𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → ∃𝑥 ∈ 𝐽 (𝐴 ∈ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ‘cfv 5888 Topctop 20698 clsccl 20822 Regcreg 21113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-reg 21120 |
This theorem is referenced by: regsep2 21180 regr1lem 21542 kqreglem1 21544 kqreglem2 21545 reghmph 21596 cnextcn 21871 |
Copyright terms: Public domain | W3C validator |