MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbiim Structured version   Visualization version   GIF version

Theorem simplbiim 659
Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
simplbiim.1 (𝜑 ↔ (𝜓𝜒))
simplbiim.2 (𝜒𝜃)
Assertion
Ref Expression
simplbiim (𝜑𝜃)

Proof of Theorem simplbiim
StepHypRef Expression
1 simplbiim.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 simplbiim.2 . . 3 (𝜒𝜃)
32adantl 482 . 2 ((𝜓𝜒) → 𝜃)
41, 3sylbi 207 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  invdisjrab  4639  solin  5058  xpidtr  5518  elpredim  5692  mpt2difsnif  6753  ixpn0  7940  zltaddlt1le  12324  oddnn02np1  15072  sumeven  15110  dvdsprmpweqnn  15589  sgrpass  17290  zringndrg  19838  pmatcoe1fsupp  20506  t1sncld  21130  regsep  21138  nrmsep3  21159  ncvsprp  22952  ncvsm1  22954  ncvsdif  22955  ncvspi  22956  ncvspds  22961  lgsqrlem4  25074  vtxdginducedm1lem4  26438  isclwwlksnx  26889  hashecclwwlksn1  26954  umgrhashecclwwlk  26955  0spth  26987  eucrctshift  27103  frcond1  27130  2pthfrgr  27148  frgrncvvdeqlem7  27169  frgrncvvdeq  27173  frgrwopreglem3  27178  frgrwopreglem5lem  27184  frgr2wwlk1  27193  stcltr1i  29133  bnj570  30975  bnj1145  31061  bnj1398  31102  bnj1442  31117  sconnpht  31211  poimirlem25  33434  2reu1  41186  lighneallem2  41523  fdmdifeqresdif  42120
  Copyright terms: Public domain W3C validator