Proof of Theorem regsep2
| Step | Hyp | Ref
| Expression |
| 1 | | regtop 21137 |
. . . . . . 7
⊢ (𝐽 ∈ Reg → 𝐽 ∈ Top) |
| 2 | 1 | ad2antrr 762 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐽 ∈ Top) |
| 3 | | elssuni 4467 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽) |
| 4 | | t1sep.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
| 5 | 3, 4 | syl6sseqr 3652 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ 𝑋) |
| 6 | 5 | ad2antrl 764 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ 𝑋) |
| 7 | 4 | clscld 20851 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
| 8 | 2, 6, 7 | syl2anc 693 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽)) |
| 9 | 4 | cldopn 20835 |
. . . . 5
⊢
(((cls‘𝐽)‘𝑦) ∈ (Clsd‘𝐽) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
| 10 | 8, 9 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽) |
| 11 | | simprrr 805 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)) |
| 12 | 4 | clsss3 20863 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
| 13 | 2, 6, 12 | syl2anc 693 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((cls‘𝐽)‘𝑦) ⊆ 𝑋) |
| 14 | | simplr1 1103 |
. . . . . . 7
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ∈ (Clsd‘𝐽)) |
| 15 | 4 | cldss 20833 |
. . . . . . 7
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
| 16 | 14, 15 | syl 17 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ 𝑋) |
| 17 | | ssconb 3743 |
. . . . . 6
⊢
((((cls‘𝐽)‘𝑦) ⊆ 𝑋 ∧ 𝐶 ⊆ 𝑋) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
| 18 | 13, 16, 17 | syl2anc 693 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → (((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶) ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
| 19 | 11, 18 | mpbid 222 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) |
| 20 | | simprrl 804 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝐴 ∈ 𝑦) |
| 21 | 4 | sscls 20860 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
| 22 | 2, 6, 21 | syl2anc 693 |
. . . . . 6
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → 𝑦 ⊆ ((cls‘𝐽)‘𝑦)) |
| 23 | | sslin 3839 |
. . . . . 6
⊢ (𝑦 ⊆ ((cls‘𝐽)‘𝑦) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦))) |
| 25 | | incom 3805 |
. . . . . 6
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = (((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) |
| 26 | | disjdif 4040 |
. . . . . 6
⊢
(((cls‘𝐽)‘𝑦) ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑦))) = ∅ |
| 27 | 25, 26 | eqtri 2644 |
. . . . 5
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅ |
| 28 | | sseq0 3975 |
. . . . 5
⊢ ((((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) ⊆ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ ((cls‘𝐽)‘𝑦)) = ∅) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
| 29 | 24, 27, 28 | sylancl 694 |
. . . 4
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅) |
| 30 | | sseq2 3627 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝐶 ⊆ 𝑥 ↔ 𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)))) |
| 31 | | ineq1 3807 |
. . . . . . 7
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → (𝑥 ∩ 𝑦) = ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦)) |
| 32 | 31 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) |
| 33 | 30, 32 | 3anbi13d 1401 |
. . . . 5
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑦)) → ((𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅))) |
| 34 | 33 | rspcev 3309 |
. . . 4
⊢ (((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∈ 𝐽 ∧ (𝐶 ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∧ 𝐴 ∈ 𝑦 ∧ ((𝑋 ∖ ((cls‘𝐽)‘𝑦)) ∩ 𝑦) = ∅)) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 35 | 10, 19, 20, 29, 34 | syl13anc 1328 |
. . 3
⊢ (((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) ∧ (𝑦 ∈ 𝐽 ∧ (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶)))) → ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 36 | | simpl 473 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐽 ∈ Reg) |
| 37 | | simpr1 1067 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ (Clsd‘𝐽)) |
| 38 | 4 | cldopn 20835 |
. . . . 5
⊢ (𝐶 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
| 39 | 37, 38 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝑋 ∖ 𝐶) ∈ 𝐽) |
| 40 | | simpr2 1068 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ 𝑋) |
| 41 | | simpr3 1069 |
. . . . 5
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐴 ∈ 𝐶) |
| 42 | 40, 41 | eldifd 3585 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐴 ∈ (𝑋 ∖ 𝐶)) |
| 43 | | regsep 21138 |
. . . 4
⊢ ((𝐽 ∈ Reg ∧ (𝑋 ∖ 𝐶) ∈ 𝐽 ∧ 𝐴 ∈ (𝑋 ∖ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
| 44 | 36, 39, 42, 43 | syl3anc 1326 |
. . 3
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ ((cls‘𝐽)‘𝑦) ⊆ (𝑋 ∖ 𝐶))) |
| 45 | 35, 44 | reximddv 3018 |
. 2
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑦 ∈ 𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 46 | | rexcom 3099 |
. 2
⊢
(∃𝑦 ∈
𝐽 ∃𝑥 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 47 | 45, 46 | sylib 208 |
1
⊢ ((𝐽 ∈ Reg ∧ (𝐶 ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ 𝑋 ∧ ¬ 𝐴 ∈ 𝐶)) → ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐽 (𝐶 ⊆ 𝑥 ∧ 𝐴 ∈ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)) |