![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmdsmm | Structured version Visualization version GIF version |
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) |
Ref | Expression |
---|---|
reldmdsmm | ⊢ Rel dom ⊕m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dsmm 20076 | . 2 ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) | |
2 | 1 | reldmmpt2 6771 | 1 ⊢ Rel dom ⊕m |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 dom cdm 5114 Rel wrel 5119 ‘cfv 5888 (class class class)co 6650 Xcixp 7908 Fincfn 7955 Basecbs 15857 ↾s cress 15858 0gc0g 16100 Xscprds 16106 ⊕m cdsmm 20075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-dm 5124 df-oprab 6654 df-mpt2 6655 df-dsmm 20076 |
This theorem is referenced by: dsmmval 20078 dsmmval2 20080 |
Copyright terms: Public domain | W3C validator |