MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmdeg Structured version   Visualization version   GIF version

Theorem reldmmdeg 23817
Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
reldmmdeg Rel dom mDeg

Proof of Theorem reldmmdeg
Dummy variables 𝑖 𝑟 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mdeg 23815 . 2 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
21reldmmpt2 6771 1 Rel dom mDeg
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3200  cmpt 4729  dom cdm 5114  ran crn 5115  Rel wrel 5119  cfv 5888  (class class class)co 6650   supp csupp 7295  supcsup 8346  *cxr 10073   < clt 10074  Basecbs 15857  0gc0g 16100   Σg cgsu 16101   mPoly cmpl 19353  fldccnfld 19746   mDeg cmdg 23813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124  df-oprab 6654  df-mpt2 6655  df-mdeg 23815
This theorem is referenced by:  mdegfval  23822  deg1fval  23840
  Copyright terms: Public domain W3C validator