![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releldmb | Structured version Visualization version GIF version |
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.) |
Ref | Expression |
---|---|
releldmb | ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5319 | . . 3 ⊢ (𝐴 ∈ dom 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
2 | 1 | ibi 256 | . 2 ⊢ (𝐴 ∈ dom 𝑅 → ∃𝑥 𝐴𝑅𝑥) |
3 | releldm 5358 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑥) → 𝐴 ∈ dom 𝑅) | |
4 | 3 | ex 450 | . . 3 ⊢ (Rel 𝑅 → (𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
5 | 4 | exlimdv 1861 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝐴𝑅𝑥 → 𝐴 ∈ dom 𝑅)) |
6 | 2, 5 | impbid2 216 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 ∈ wcel 1990 class class class wbr 4653 dom cdm 5114 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-dm 5124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |