MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldmb Structured version   Visualization version   Unicode version

Theorem releldmb 5360
Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
releldmb  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem releldmb
StepHypRef Expression
1 eldmg 5319 . . 3  |-  ( A  e.  dom  R  -> 
( A  e.  dom  R  <->  E. x  A R x ) )
21ibi 256 . 2  |-  ( A  e.  dom  R  ->  E. x  A R x )
3 releldm 5358 . . . 4  |-  ( ( Rel  R  /\  A R x )  ->  A  e.  dom  R )
43ex 450 . . 3  |-  ( Rel 
R  ->  ( A R x  ->  A  e. 
dom  R ) )
54exlimdv 1861 . 2  |-  ( Rel 
R  ->  ( E. x  A R x  ->  A  e.  dom  R ) )
62, 5impbid2 216 1  |-  ( Rel 
R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   E.wex 1704    e. wcel 1990   class class class wbr 4653   dom cdm 5114   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-dm 5124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator