MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releupth Structured version   Visualization version   GIF version

Theorem releupth 27059
Description: The set (EulerPaths‘𝐺) of all Eulerian paths on 𝐺 is a set of pairs by our definition of an Eulerian path, and so is a relation. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Assertion
Ref Expression
releupth Rel (EulerPaths‘𝐺)

Proof of Theorem releupth
Dummy variables 𝑓 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-eupth 27058 . 2 EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(#‘𝑓))–onto→dom (iEdg‘𝑔))})
21relmptopab 6883 1 Rel (EulerPaths‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 384  Vcvv 3200   class class class wbr 4653  dom cdm 5114  Rel wrel 5119  ontowfo 5886  cfv 5888  (class class class)co 6650  0cc0 9936  ..^cfzo 12465  #chash 13117  iEdgciedg 25875  Trailsctrls 26587  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-eupth 27058
This theorem is referenced by:  eulerpath  27101
  Copyright terms: Public domain W3C validator