MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resima2OLD Structured version   Visualization version   GIF version

Theorem resima2OLD 5433
Description: Obsolete proof of resima2 5432 as of 25-Aug-2021. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
resima2OLD (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))

Proof of Theorem resima2OLD
StepHypRef Expression
1 df-ima 5127 . 2 ((𝐴𝐶) “ 𝐵) = ran ((𝐴𝐶) ↾ 𝐵)
2 resres 5409 . . . 4 ((𝐴𝐶) ↾ 𝐵) = (𝐴 ↾ (𝐶𝐵))
32rneqi 5352 . . 3 ran ((𝐴𝐶) ↾ 𝐵) = ran (𝐴 ↾ (𝐶𝐵))
4 df-ss 3588 . . . 4 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐵)
5 incom 3805 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
65a1i 11 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐶𝐵) = (𝐵𝐶))
76reseq2d 5396 . . . . . 6 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐶𝐵)) = (𝐴 ↾ (𝐵𝐶)))
87rneqd 5353 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = ran (𝐴 ↾ (𝐵𝐶)))
9 reseq2 5391 . . . . . . 7 ((𝐵𝐶) = 𝐵 → (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
109rneqd 5353 . . . . . 6 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = ran (𝐴𝐵))
11 df-ima 5127 . . . . . 6 (𝐴𝐵) = ran (𝐴𝐵)
1210, 11syl6eqr 2674 . . . . 5 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐵𝐶)) = (𝐴𝐵))
138, 12eqtrd 2656 . . . 4 ((𝐵𝐶) = 𝐵 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
144, 13sylbi 207 . . 3 (𝐵𝐶 → ran (𝐴 ↾ (𝐶𝐵)) = (𝐴𝐵))
153, 14syl5eq 2668 . 2 (𝐵𝐶 → ran ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
161, 15syl5eq 2668 1 (𝐵𝐶 → ((𝐴𝐶) “ 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cin 3573  wss 3574  ran crn 5115  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator