![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpssres | Structured version Visualization version GIF version |
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpssres | ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5126 | . . 3 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 × 𝐵) ∩ (𝐶 × V)) | |
2 | inxp 5254 | . . 3 ⊢ ((𝐴 × 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) | |
3 | inv1 3970 | . . . 4 ⊢ (𝐵 ∩ V) = 𝐵 | |
4 | 3 | xpeq2i 5136 | . . 3 ⊢ ((𝐴 ∩ 𝐶) × (𝐵 ∩ V)) = ((𝐴 ∩ 𝐶) × 𝐵) |
5 | 1, 2, 4 | 3eqtri 2648 | . 2 ⊢ ((𝐴 × 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐶) × 𝐵) |
6 | sseqin2 3817 | . . . 4 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
7 | 6 | biimpi 206 | . . 3 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
8 | 7 | xpeq1d 5138 | . 2 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 ∩ 𝐶) × 𝐵) = (𝐶 × 𝐵)) |
9 | 5, 8 | syl5eq 2668 | 1 ⊢ (𝐶 ⊆ 𝐴 → ((𝐴 × 𝐵) ↾ 𝐶) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 × cxp 5112 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-rel 5121 df-res 5126 |
This theorem is referenced by: fparlem3 7279 fparlem4 7280 fpwwe2lem13 9464 pwssplit3 19061 cnconst2 21087 xkoccn 21422 tmdgsum 21899 dvcmul 23707 dvcmulf 23708 dvsconst 38529 dvsid 38530 aacllem 42547 |
Copyright terms: Public domain | W3C validator |