| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexab2 | Structured version Visualization version GIF version | ||
| Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexab2 | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2918 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓)) | |
| 2 | nfsab1 2612 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
| 3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 4 | 2, 3 | nfan 1828 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) |
| 5 | nfv 1843 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜒) | |
| 6 | eleq1 2689 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
| 7 | abid 2610 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | syl6bb 276 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
| 9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | anbi12d 747 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| 11 | 4, 5, 10 | cbvex 2272 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜓) ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| 12 | 1, 11 | bitri 264 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-rex 2918 |
| This theorem is referenced by: rexrab2 3374 tmdgsum2 21900 clrellem 37929 brtrclfv2 38019 |
| Copyright terms: Public domain | W3C validator |