MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrab2 Structured version   Visualization version   GIF version

Theorem rexrab2 3374
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
rexrab2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem rexrab2
StepHypRef Expression
1 df-rab 2921 . . 3 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
21rexeqi 3143 . 2 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓)
3 ralab2.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
43rexab2 3373 . 2 (∃𝑥 ∈ {𝑦 ∣ (𝑦𝐴𝜑)}𝜓 ↔ ∃𝑦((𝑦𝐴𝜑) ∧ 𝜒))
5 anass 681 . . . 4 (((𝑦𝐴𝜑) ∧ 𝜒) ↔ (𝑦𝐴 ∧ (𝜑𝜒)))
65exbii 1774 . . 3 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
7 df-rex 2918 . . 3 (∃𝑦𝐴 (𝜑𝜒) ↔ ∃𝑦(𝑦𝐴 ∧ (𝜑𝜒)))
86, 7bitr4i 267 . 2 (∃𝑦((𝑦𝐴𝜑) ∧ 𝜒) ↔ ∃𝑦𝐴 (𝜑𝜒))
92, 4, 83bitri 286 1 (∃𝑥 ∈ {𝑦𝐴𝜑}𝜓 ↔ ∃𝑦𝐴 (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wex 1704  wcel 1990  {cab 2608  wrex 2913  {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921
This theorem is referenced by:  frminex  5094  sstotbnd3  33575
  Copyright terms: Public domain W3C validator