| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| rexbid.1 | ⊢ Ⅎ𝑥𝜑 |
| rexbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rexbida 3047 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1708 ∈ wcel 1990 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 df-rex 2918 |
| This theorem is referenced by: rexbidvALT 3053 rexeqbid 3151 scott0 8749 infcvgaux1i 14589 bnj1463 31123 poimirlem25 33434 poimirlem26 33435 elrnmptf 39367 smfsupmpt 41021 smfinfmpt 41025 |
| Copyright terms: Public domain | W3C validator |