MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Visualization version   GIF version

Theorem scott0 8749
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e. 𝐴 is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3192 . . 3 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)})
2 rab0 3955 . . 3 {𝑥 ∈ ∅ ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅
31, 2syl6eq 2672 . 2 (𝐴 = ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
4 n0 3931 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 nfre1 3005 . . . . . . . . 9 𝑥𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)
6 eqid 2622 . . . . . . . . . 10 (rank‘𝑥) = (rank‘𝑥)
7 rspe 3003 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
86, 7mpan2 707 . . . . . . . . 9 (𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
95, 8exlimi 2086 . . . . . . . 8 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
104, 9sylbi 207 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
11 fvex 6201 . . . . . . . . . . 11 (rank‘𝑥) ∈ V
12 eqeq1 2626 . . . . . . . . . . . 12 (𝑦 = (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ (rank‘𝑥) = (rank‘𝑥)))
1312anbi2d 740 . . . . . . . . . . 11 (𝑦 = (rank‘𝑥) → ((𝑥𝐴𝑦 = (rank‘𝑥)) ↔ (𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥))))
1411, 13spcev 3300 . . . . . . . . . 10 ((𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1514eximi 1762 . . . . . . . . 9 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
16 excom 2042 . . . . . . . . 9 (∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)) ↔ ∃𝑥𝑦(𝑥𝐴𝑦 = (rank‘𝑥)))
1715, 16sylibr 224 . . . . . . . 8 (∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)) → ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
18 df-rex 2918 . . . . . . . 8 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴 ∧ (rank‘𝑥) = (rank‘𝑥)))
19 df-rex 2918 . . . . . . . . 9 (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2019exbii 1774 . . . . . . . 8 (∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑦𝑥(𝑥𝐴𝑦 = (rank‘𝑥)))
2117, 18, 203imtr4i 281 . . . . . . 7 (∃𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2210, 21syl 17 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
23 abn0 3954 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = (rank‘𝑥))
2422, 23sylibr 224 . . . . 5 (𝐴 ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅)
2511dfiin2 4555 . . . . . 6 𝑥𝐴 (rank‘𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)}
26 rankon 8658 . . . . . . . . . 10 (rank‘𝑥) ∈ On
27 eleq1 2689 . . . . . . . . . 10 (𝑦 = (rank‘𝑥) → (𝑦 ∈ On ↔ (rank‘𝑥) ∈ On))
2826, 27mpbiri 248 . . . . . . . . 9 (𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
2928rexlimivw 3029 . . . . . . . 8 (∃𝑥𝐴 𝑦 = (rank‘𝑥) → 𝑦 ∈ On)
3029abssi 3677 . . . . . . 7 {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On
31 onint 6995 . . . . . . 7 (({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3230, 31mpan 706 . . . . . 6 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
3325, 32syl5eqel 2705 . . . . 5 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ≠ ∅ → 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)})
34 nfii1 4551 . . . . . . . . 9 𝑥 𝑥𝐴 (rank‘𝑥)
3534nfeq2 2780 . . . . . . . 8 𝑥 𝑦 = 𝑥𝐴 (rank‘𝑥)
36 eqeq1 2626 . . . . . . . 8 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (𝑦 = (rank‘𝑥) ↔ 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3735, 36rexbid 3051 . . . . . . 7 (𝑦 = 𝑥𝐴 (rank‘𝑥) → (∃𝑥𝐴 𝑦 = (rank‘𝑥) ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3837elabg 3351 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} ↔ ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥)))
3938ibi 256 . . . . 5 ( 𝑥𝐴 (rank‘𝑥) ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = (rank‘𝑥)} → ∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥))
40 ssid 3624 . . . . . . . . . 10 (rank‘𝑦) ⊆ (rank‘𝑦)
41 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (rank‘𝑥) = (rank‘𝑦))
4241sseq1d 3632 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑦) ⊆ (rank‘𝑦)))
4342rspcev 3309 . . . . . . . . . 10 ((𝑦𝐴 ∧ (rank‘𝑦) ⊆ (rank‘𝑦)) → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4440, 43mpan2 707 . . . . . . . . 9 (𝑦𝐴 → ∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
45 iinss 4571 . . . . . . . . 9 (∃𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) → 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
4644, 45syl 17 . . . . . . . 8 (𝑦𝐴 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
47 sseq1 3626 . . . . . . . 8 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ( 𝑥𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
4846, 47syl5ib 234 . . . . . . 7 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → (𝑦𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))
4948ralrimiv 2965 . . . . . 6 ( 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5049reximi 3011 . . . . 5 (∃𝑥𝐴 𝑥𝐴 (rank‘𝑥) = (rank‘𝑥) → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5124, 33, 39, 504syl 19 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
52 rabn0 3958 . . . 4 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅ ↔ ∃𝑥𝐴𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦))
5351, 52sylibr 224 . . 3 (𝐴 ≠ ∅ → {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅)
5453necon4i 2829 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ → 𝐴 = ∅)
553, 54impbii 199 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   cint 4475   ciin 4521  Oncon0 5723  cfv 5888  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  scott0s  8751  cplem1  8752  karden  8758  scott0f  33977
  Copyright terms: Public domain W3C validator