Proof of Theorem smfinfmpt
| Step | Hyp | Ref
| Expression |
| 1 | | smfinfmpt.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ))) |
| 3 | | smfinfmpt.x |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
| 4 | | smfinfmpt.d |
. . . . . . 7
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵}) |
| 6 | | smfinfmpt.n |
. . . . . . . . 9
⊢
Ⅎ𝑛𝜑 |
| 7 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))) |
| 8 | | smfinfmpt.f |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| 9 | 7, 8 | fvmpt2d 6293 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 10 | 9 | dmeqd 5326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 11 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑛 |
| 12 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑍 |
| 13 | 11, 12 | nfel 2777 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑛 ∈ 𝑍 |
| 14 | 3, 13 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝜑 ∧ 𝑛 ∈ 𝑍) |
| 15 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 16 | | smfinfmpt.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑆 ∈ SAlg) |
| 18 | | smfinfmpt.b |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 19 | 18 | 3expa 1265 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 20 | 14, 17, 19, 8 | smffmpt 41011 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 21 | 20 | fvmptelrn 39428 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 22 | 14, 15, 21 | dmmptdf 39417 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 23 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 = 𝐴) |
| 24 | 10, 22, 23 | 3eqtrrd 2661 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 = dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 25 | 6, 24 | iineq2d 4541 |
. . . . . . . 8
⊢ (𝜑 → ∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 26 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 𝐴 |
| 27 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 28 | 12, 27 | nfmpt 4746 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 29 | 28, 11 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 30 | 29 | nfdm 5367 |
. . . . . . . . . 10
⊢
Ⅎ𝑥dom
((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 31 | 12, 30 | nfiin 4549 |
. . . . . . . . 9
⊢
Ⅎ𝑥∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 32 | 26, 31 | rabeqf 3190 |
. . . . . . . 8
⊢ (∩ 𝑛 ∈ 𝑍 𝐴 = ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵}) |
| 33 | 25, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵}) |
| 34 | | smfinfmpt.y |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝜑 |
| 35 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑦 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 36 | 34, 35 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 37 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑥 |
| 38 | | nfii1 4551 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 39 | 37, 38 | nfel 2777 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) |
| 40 | 6, 39 | nfan 1828 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 41 | | simpll 790 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
| 42 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 43 | | eliinid 39294 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 44 | 43 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) |
| 45 | 24 | eqcomd 2628 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
| 46 | 45 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) = 𝐴) |
| 47 | 44, 46 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
| 48 | 9 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
| 49 | 48 | 3adant3 1081 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
| 50 | | simp3 1063 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 51 | 15 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 52 | 50, 18, 51 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 53 | 49, 52 | eqtr2d 2657 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
| 54 | 53 | breq2d 4665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → (𝑦 ≤ 𝐵 ↔ 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 55 | 41, 42, 47, 54 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) ∧ 𝑛 ∈ 𝑍) → (𝑦 ≤ 𝐵 ↔ 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 56 | 40, 55 | ralbida 2982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 57 | 36, 56 | rexbid 3051 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 58 | 3, 57 | rabbida 39274 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)}) |
| 59 | 33, 58 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)}) |
| 60 | 5, 59 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)}) |
| 61 | 3, 60 | alrimi 2082 |
. . . 4
⊢ (𝜑 → ∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)}) |
| 62 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛ℝ |
| 63 | | nfra1 2941 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 |
| 64 | 62, 63 | nfrex 3007 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵 |
| 65 | | nfii1 4551 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∩ 𝑛 ∈ 𝑍 𝐴 |
| 66 | 64, 65 | nfrab 3123 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛{𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} |
| 67 | 4, 66 | nfcxfr 2762 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝐷 |
| 68 | 37, 67 | nfel 2777 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 𝑥 ∈ 𝐷 |
| 69 | 6, 68 | nfan 1828 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ 𝐷) |
| 70 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝜑) |
| 71 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 72 | 4 | eleq2i 2693 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵}) |
| 73 | 72 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵}) |
| 74 | | rabidim1 3117 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
| 76 | 75 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ ∩
𝑛 ∈ 𝑍 𝐴) |
| 77 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 78 | | eliinid 39294 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
| 79 | 76, 77, 78 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
| 80 | 79 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝑥 ∈ 𝐴) |
| 81 | 53 | idi 2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
| 82 | 70, 71, 80, 81 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑛 ∈ 𝑍) → 𝐵 = (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)) |
| 83 | 69, 82 | mpteq2da 4743 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑛 ∈ 𝑍 ↦ 𝐵) = (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 84 | 83 | rneqd 5353 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ran (𝑛 ∈ 𝑍 ↦ 𝐵) = ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥))) |
| 85 | 84 | infeq1d 8383 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
| 86 | 85 | ex 450 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐷 → inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
| 87 | 3, 86 | ralrimi 2957 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐷 inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
| 88 | | mpteq12f 4731 |
. . . 4
⊢
((∀𝑥 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ∧ ∀𝑥 ∈ 𝐷 inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < ) = inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) → (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
| 89 | 61, 87, 88 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
| 90 | 2, 89 | eqtrd 2656 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < ))) |
| 91 | | nfmpt1 4747 |
. . 3
⊢
Ⅎ𝑛(𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 92 | | smfinfmpt.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 93 | | smfinfmpt.z |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 94 | | eqid 2622 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 95 | 6, 8, 94 | fmptdf 6387 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵)):𝑍⟶(SMblFn‘𝑆)) |
| 96 | | eqid 2622 |
. . 3
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} |
| 97 | | eqid 2622 |
. . 3
⊢ (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) |
| 98 | 91, 28, 92, 93, 16, 95, 96, 97 | smfinf 41024 |
. 2
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom ((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)} ↦ inf(ran (𝑛 ∈ 𝑍 ↦ (((𝑛 ∈ 𝑍 ↦ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑛)‘𝑥)), ℝ, < )) ∈
(SMblFn‘𝑆)) |
| 99 | 90, 98 | eqeltrd 2701 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |