MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimpm Structured version   Visualization version   GIF version

Theorem rlimpm 14231
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimpm (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))

Proof of Theorem rlimpm
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rlim 14220 . . . . 5 𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
2 opabssxp 5193 . . . . 5 {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))} ⊆ ((ℂ ↑pm ℝ) × ℂ)
31, 2eqsstri 3635 . . . 4 𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ)
4 dmss 5323 . . . 4 ( ⇝𝑟 ⊆ ((ℂ ↑pm ℝ) × ℂ) → dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ))
53, 4ax-mp 5 . . 3 dom ⇝𝑟 ⊆ dom ((ℂ ↑pm ℝ) × ℂ)
6 dmxpss 5565 . . 3 dom ((ℂ ↑pm ℝ) × ℂ) ⊆ (ℂ ↑pm ℝ)
75, 6sstri 3612 . 2 dom ⇝𝑟 ⊆ (ℂ ↑pm ℝ)
8 rlimrel 14224 . . 3 Rel ⇝𝑟
98releldmi 5362 . 2 (𝐹𝑟 𝐴𝐹 ∈ dom ⇝𝑟 )
107, 9sseldi 3601 1 (𝐹𝑟 𝐴𝐹 ∈ (ℂ ↑pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  {copab 4712   × cxp 5112  dom cdm 5114  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  cr 9935   < clt 10074  cle 10075  cmin 10266  +crp 11832  abscabs 13974  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rlim 14220
This theorem is referenced by:  rlimf  14232  rlimss  14233  rlimclim1  14276
  Copyright terms: Public domain W3C validator