![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxpss | Structured version Visualization version GIF version |
Description: The domain of a Cartesian product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.) |
Ref | Expression |
---|---|
dmxpss | ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 5129 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
2 | xp0 5552 | . . . . . 6 ⊢ (𝐴 × ∅) = ∅ | |
3 | 1, 2 | syl6eq 2672 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
4 | 3 | dmeqd 5326 | . . . 4 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = dom ∅) |
5 | dm0 5339 | . . . 4 ⊢ dom ∅ = ∅ | |
6 | 4, 5 | syl6eq 2672 | . . 3 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) = ∅) |
7 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
8 | 6, 7 | syl6eqss 3655 | . 2 ⊢ (𝐵 = ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
9 | dmxp 5344 | . . 3 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
10 | eqimss 3657 | . . 3 ⊢ (dom (𝐴 × 𝐵) = 𝐴 → dom (𝐴 × 𝐵) ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) ⊆ 𝐴) |
12 | 8, 11 | pm2.61ine 2877 | 1 ⊢ dom (𝐴 × 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ≠ wne 2794 ⊆ wss 3574 ∅c0 3915 × cxp 5112 dom cdm 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 |
This theorem is referenced by: rnxpss 5566 ssxpb 5568 funssxp 6061 dff3 6372 fparlem3 7279 fparlem4 7280 brdom3 9350 brdom5 9351 brdom4 9352 canthwelem 9472 pwfseqlem4 9484 uzrdgfni 12757 xptrrel 13719 rlimpm 14231 xpsc0 16220 xpsc1 16221 xpsfrnel2 16225 isohom 16436 ledm 17224 gsumxp 18375 dprd2d2 18443 tsmsxp 21958 dvbssntr 23664 esum2d 30155 poimirlem3 33412 rtrclex 37924 trclexi 37927 rtrclexi 37928 cnvtrcl0 37933 dmtrcl 37934 rp-imass 38065 rfovcnvf1od 38298 issmflem 40936 |
Copyright terms: Public domain | W3C validator |