| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoxfrdOLD | Structured version Visualization version GIF version | ||
| Description: Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rmoxfrd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
| rmoxfrd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| rmoxfrd.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rmoxfrdOLD | ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoxfrd.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
| 2 | rmoxfrd.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 3 | reurex 3160 | . . . . . 6 ⊢ (∃!𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| 5 | rmoxfrd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 6 | 1, 4, 5 | rexxfrd 4881 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
| 7 | df-rex 2918 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 8 | df-rex 2918 | . . . 4 ⊢ (∃𝑦 ∈ 𝐶 𝜒 ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)) | |
| 9 | 6, 7, 8 | 3bitr3g 302 | . . 3 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
| 10 | 1, 2, 5 | reuxfr4d 29330 | . . . 4 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑦 ∈ 𝐶 𝜒)) |
| 11 | df-reu 2919 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 12 | df-reu 2919 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐶 𝜒 ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)) | |
| 13 | 10, 11, 12 | 3bitr3g 302 | . . 3 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
| 14 | 9, 13 | imbi12d 334 | . 2 ⊢ (𝜑 → ((∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒)))) |
| 15 | df-mo 2475 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓))) | |
| 16 | df-mo 2475 | . 2 ⊢ (∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) ↔ (∃𝑦(𝑦 ∈ 𝐶 ∧ 𝜒) → ∃!𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) | |
| 17 | 14, 15, 16 | 3bitr4g 303 | 1 ⊢ (𝜑 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜓) ↔ ∃*𝑦(𝑦 ∈ 𝐶 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃!weu 2470 ∃*wmo 2471 ∃wrex 2913 ∃!wreu 2914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |