![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reurex | Structured version Visualization version GIF version |
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.) |
Ref | Expression |
---|---|
reurex | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu5 3159 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) | |
2 | 1 | simplbi 476 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 2913 ∃!wreu 2914 ∃*wrmo 2915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-eu 2474 df-mo 2475 df-rex 2918 df-reu 2919 df-rmo 2920 |
This theorem is referenced by: reu3 3396 sbcreu 3515 reuxfrd 4893 tz6.26 5711 weniso 6604 oawordex 7637 oaabs 7724 oaabs2 7725 supval2 8361 fisup2g 8374 fiinf2g 8406 nqerf 9752 qbtwnre 12030 modprm0 15510 meet0 17137 join0 17138 issrgid 18523 isringid 18573 lspsneu 19123 frgpcyg 19922 qtophmeo 21620 pjthlem2 23209 dyadmax 23366 quotlem 24055 nfrgr2v 27136 2pthfrgrrn 27146 frgrncvvdeqlem9 27171 frgr2wwlkn0 27192 pjhthlem2 28251 cnlnadj 28938 reuxfr4d 29330 rmoxfrdOLD 29332 rmoxfrd 29333 cvmliftpht 31300 lcfl7N 36790 2reu2rex 41183 2rexreu 41185 2reu4 41190 isringrng 41881 uzlidlring 41929 |
Copyright terms: Public domain | W3C validator |