![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcval | Structured version Visualization version GIF version |
Description: Value of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcval.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcval.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcval.b | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
rngcval.h | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcval | ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcval.c | . 2 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | df-rngc 41959 | . . . 4 ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))))) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))) |
4 | fveq2 6191 | . . . . 5 ⊢ (𝑢 = 𝑈 → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) | |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → (ExtStrCat‘𝑢) = (ExtStrCat‘𝑈)) |
6 | ineq1 3807 | . . . . . . . 8 ⊢ (𝑢 = 𝑈 → (𝑢 ∩ Rng) = (𝑈 ∩ Rng)) | |
7 | 6 | sqxpeqd 5141 | . . . . . . 7 ⊢ (𝑢 = 𝑈 → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
8 | rngcval.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) | |
9 | 8 | sqxpeqd 5141 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 × 𝐵) = ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
10 | 9 | eqcomd 2628 | . . . . . . 7 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = (𝐵 × 𝐵)) |
11 | 7, 10 | sylan9eqr 2678 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)) = (𝐵 × 𝐵)) |
12 | 11 | reseq2d 5396 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = ( RngHomo ↾ (𝐵 × 𝐵))) |
13 | rngcval.h | . . . . . . 7 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) | |
14 | 13 | eqcomd 2628 | . . . . . 6 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
15 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ (𝐵 × 𝐵)) = 𝐻) |
16 | 12, 15 | eqtrd 2656 | . . . 4 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng))) = 𝐻) |
17 | 5, 16 | oveq12d 6668 | . . 3 ⊢ ((𝜑 ∧ 𝑢 = 𝑈) → ((ExtStrCat‘𝑢) ↾cat ( RngHomo ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
18 | rngcval.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
19 | elex 3212 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
21 | ovexd 6680 | . . 3 ⊢ (𝜑 → ((ExtStrCat‘𝑈) ↾cat 𝐻) ∈ V) | |
22 | 3, 17, 20, 21 | fvmptd 6288 | . 2 ⊢ (𝜑 → (RngCat‘𝑈) = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
23 | 1, 22 | syl5eq 2668 | 1 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ↦ cmpt 4729 × cxp 5112 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 ↾cat cresc 16468 ExtStrCatcestrc 16762 Rngcrng 41874 RngHomo crngh 41885 RngCatcrngc 41957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-rngc 41959 |
This theorem is referenced by: rngcbas 41965 rngchomfval 41966 rngccofval 41970 dfrngc2 41972 rngccat 41978 rngcid 41979 rngcifuestrc 41997 funcrngcsetc 41998 |
Copyright terms: Public domain | W3C validator |