| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnin | Structured version Visualization version GIF version | ||
| Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| rnin | ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin 5540 | . . . 4 ⊢ ◡(𝐴 ∩ 𝐵) = (◡𝐴 ∩ ◡𝐵) | |
| 2 | 1 | dmeqi 5325 | . . 3 ⊢ dom ◡(𝐴 ∩ 𝐵) = dom (◡𝐴 ∩ ◡𝐵) |
| 3 | dmin 5332 | . . 3 ⊢ dom (◡𝐴 ∩ ◡𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) | |
| 4 | 2, 3 | eqsstri 3635 | . 2 ⊢ dom ◡(𝐴 ∩ 𝐵) ⊆ (dom ◡𝐴 ∩ dom ◡𝐵) |
| 5 | df-rn 5125 | . 2 ⊢ ran (𝐴 ∩ 𝐵) = dom ◡(𝐴 ∩ 𝐵) | |
| 6 | df-rn 5125 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 7 | df-rn 5125 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 8 | 6, 7 | ineq12i 3812 | . 2 ⊢ (ran 𝐴 ∩ ran 𝐵) = (dom ◡𝐴 ∩ dom ◡𝐵) |
| 9 | 4, 5, 8 | 3sstr4i 3644 | 1 ⊢ ran (𝐴 ∩ 𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∩ cin 3573 ⊆ wss 3574 ◡ccnv 5113 dom cdm 5114 ran crn 5115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: inimass 5549 restutop 22041 |
| Copyright terms: Public domain | W3C validator |