MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnin Structured version   Visualization version   Unicode version

Theorem rnin 5542
Description: The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
rnin  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )

Proof of Theorem rnin
StepHypRef Expression
1 cnvin 5540 . . . 4  |-  `' ( A  i^i  B )  =  ( `' A  i^i  `' B )
21dmeqi 5325 . . 3  |-  dom  `' ( A  i^i  B )  =  dom  ( `' A  i^i  `' B
)
3 dmin 5332 . . 3  |-  dom  ( `' A  i^i  `' B
)  C_  ( dom  `' A  i^i  dom  `' B )
42, 3eqsstri 3635 . 2  |-  dom  `' ( A  i^i  B ) 
C_  ( dom  `' A  i^i  dom  `' B
)
5 df-rn 5125 . 2  |-  ran  ( A  i^i  B )  =  dom  `' ( A  i^i  B )
6 df-rn 5125 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 5125 . . 3  |-  ran  B  =  dom  `' B
86, 7ineq12i 3812 . 2  |-  ( ran 
A  i^i  ran  B )  =  ( dom  `' A  i^i  dom  `' B
)
94, 5, 83sstr4i 3644 1  |-  ran  ( A  i^i  B )  C_  ( ran  A  i^i  ran  B )
Colors of variables: wff setvar class
Syntax hints:    i^i cin 3573    C_ wss 3574   `'ccnv 5113   dom cdm 5114   ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  inimass  5549  restutop  22041
  Copyright terms: Public domain W3C validator