| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcda | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 29-Jun-2020.) |
| Ref | Expression |
|---|---|
| rspcdva.1 | ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) |
| rspcdva.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| rspcdva.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| rspcda.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| rspcda | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdva.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | rspcdva.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 3 | rspcdva.1 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | rspcv 3305 | . 2 ⊢ (𝐶 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| 5 | 1, 2, 4 | sylc 65 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |