| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcebdv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| rspcebdv.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴) |
| Ref | Expression |
|---|---|
| rspcebdv | ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcebdv.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴) | |
| 2 | rspcdv.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syldan 487 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 ↔ 𝜒)) |
| 4 | 3 | biimpd 219 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝜓 → 𝜒)) |
| 5 | 4 | expcom 451 | . . . 4 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| 6 | 5 | pm2.43b 55 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 7 | 6 | rexlimdvw 3034 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| 8 | rspcdv.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 9 | 8, 2 | rspcedv 3313 | . 2 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| 10 | 7, 9 | impbid 202 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: fusgr2wsp2nb 27198 |
| Copyright terms: Public domain | W3C validator |