| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb1 | Structured version Visualization version GIF version | ||
| Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb5 2430) or a non-freeness hypothesis (sb5f 2386). (Contributed by NM, 13-May-1993.) |
| Ref | Expression |
|---|---|
| sb1 | ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 1881 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
| 2 | 1 | simprbi 480 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-sb 1881 |
| This theorem is referenced by: spsbe 1884 sb4 2356 sb4a 2357 sb4e 2362 sb6 2429 bj-sb4v 32757 bj-sb6 32767 bj-sb3b 32804 wl-sb5nae 33340 |
| Copyright terms: Public domain | W3C validator |