MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5f Structured version   Visualization version   GIF version

Theorem sb5f 2386
Description: Equivalence for substitution when 𝑦 is not free in 𝜑. The implication "to the right" is sb1 1883 and does not require the non-freeness hypothesis. Theorem sb5 2430 replaces the non-freeness hypothesis with a dv condition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sb6f.1 𝑦𝜑
Assertion
Ref Expression
sb5f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb5f
StepHypRef Expression
1 sb6f.1 . . 3 𝑦𝜑
21sb6f 2385 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31equs45f 2350 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
42, 3bitr4i 267 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704  wnf 1708  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  sb7f  2453
  Copyright terms: Public domain W3C validator