| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc2rexgOLD | Structured version Visualization version GIF version | ||
| Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 6687 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbc2rexgOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | sbcrexgOLD 37349 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑)) | |
| 3 | sbcrexgOLD 37349 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) | |
| 4 | 3 | rexbidv 3052 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑏 ∈ 𝐵 [𝐴 / 𝑎]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) |
| 5 | 2, 4 | bitrd 268 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbc4rexgOLD 37354 |
| Copyright terms: Public domain | W3C validator |