| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc4rex | Structured version Visualization version GIF version | ||
| Description: Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbc4rex | ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2rex 37351 | . 2 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑) | |
| 2 | sbc2rex 37351 | . . 3 ⊢ ([𝐴 / 𝑎]∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) | |
| 3 | 2 | 2rexbii 3042 | . 2 ⊢ (∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) |
| 4 | 1, 3 | bitri 264 | 1 ⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∃wrex 2913 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: 6rexfrabdioph 37363 7rexfrabdioph 37364 |
| Copyright terms: Public domain | W3C validator |