| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcexf | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
| Ref | Expression |
|---|---|
| sbcexf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| sbcexf | ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | sb8e 2425 | . . 3 ⊢ (∃𝑦𝜑 ↔ ∃𝑧[𝑧 / 𝑦]𝜑) |
| 3 | 2 | sbcbii 3491 | . 2 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ [𝐴 / 𝑥]∃𝑧[𝑧 / 𝑦]𝜑) |
| 4 | sbcex2 3486 | . 2 ⊢ ([𝐴 / 𝑥]∃𝑧[𝑧 / 𝑦]𝜑 ↔ ∃𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
| 5 | sbcexf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 6 | nfs1v 2437 | . . . 4 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
| 7 | 5, 6 | nfsbc 3457 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 |
| 8 | nfv 1843 | . . 3 ⊢ Ⅎ𝑧[𝐴 / 𝑥]𝜑 | |
| 9 | sbequ12r 2112 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑 ↔ 𝜑)) | |
| 10 | 9 | sbcbidv 3490 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 11 | 7, 8, 10 | cbvex 2272 | . 2 ⊢ (∃𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
| 12 | 3, 4, 11 | 3bitri 286 | 1 ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∃wex 1704 [wsb 1880 Ⅎwnfc 2751 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbcexfi 33920 |
| Copyright terms: Public domain | W3C validator |