![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 2436 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | |
2 | 1 | nf5i 2024 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1708 [wsb 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
This theorem is referenced by: mo3 2507 eu1 2510 2mo 2551 2eu6 2558 cbvralf 3165 cbvralsv 3182 cbvrexsv 3183 cbvrab 3198 sbhypf 3253 mob2 3386 reu2 3394 reu2eqd 3403 sbcralt 3510 sbcreu 3515 cbvreucsf 3567 cbvrabcsf 3568 sbcel12 3983 sbceqg 3984 csbif 4138 cbvopab1 4723 cbvopab1s 4725 cbvmptf 4748 cbvmpt 4749 opelopabsb 4985 csbopab 5008 csbopabgALT 5009 opeliunxp 5170 ralxpf 5268 cbviota 5856 csbiota 5881 isarep1 5977 cbvriota 6621 csbriota 6623 onminex 7007 tfis 7054 findes 7096 abrexex2g 7144 abrexex2OLD 7150 dfoprab4f 7226 axrepndlem1 9414 axrepndlem2 9415 uzind4s 11748 mo5f 29324 ac6sf2 29429 esumcvg 30148 bj-mo3OLD 32832 wl-lem-moexsb 33350 wl-mo3t 33358 poimirlem26 33435 sbcalf 33917 sbcexf 33918 sbcrexgOLD 37349 sbcel12gOLD 38754 2sb5nd 38776 2sb5ndALT 39168 opeliun2xp 42111 |
Copyright terms: Public domain | W3C validator |