![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie2s | Structured version Visualization version GIF version |
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
Ref | Expression |
---|---|
sbcie2s.a | ⊢ 𝐴 = (𝐸‘𝑊) |
sbcie2s.b | ⊢ 𝐵 = (𝐹‘𝑊) |
sbcie2s.1 | ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie2s | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . 2 ⊢ (𝐸‘𝑤) ∈ V | |
2 | fvex 6201 | . 2 ⊢ (𝐹‘𝑤) ∈ V | |
3 | simprl 794 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = (𝐸‘𝑤)) | |
4 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
5 | sbcie2s.a | . . . . . . . 8 ⊢ 𝐴 = (𝐸‘𝑊) | |
6 | 4, 5 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = 𝐴) |
7 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐸‘𝑤) = 𝐴) |
8 | 3, 7 | eqtrd 2656 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = 𝐴) |
9 | simprr 796 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = (𝐹‘𝑤)) | |
10 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) | |
11 | sbcie2s.b | . . . . . . . 8 ⊢ 𝐵 = (𝐹‘𝑊) | |
12 | 10, 11 | syl6eqr 2674 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = 𝐵) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐹‘𝑤) = 𝐵) |
14 | 9, 13 | eqtrd 2656 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = 𝐵) |
15 | sbcie2s.1 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) | |
16 | 8, 14, 15 | syl2anc 693 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜑 ↔ 𝜓)) |
17 | 16 | bicomd 213 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜓 ↔ 𝜑)) |
18 | 17 | ex 450 | . 2 ⊢ (𝑤 = 𝑊 → ((𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤)) → (𝜓 ↔ 𝜑))) |
19 | 1, 2, 18 | sbc2iedv 3506 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 [wsbc 3435 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: istrkgc 25353 istrkgb 25354 istrkge 25356 istrkgl 25357 ishpg 25651 iscgra 25701 |
Copyright terms: Public domain | W3C validator |