MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   Unicode version

Theorem sbcie2s 15916
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
sbcie2s.a  |-  A  =  ( E `  W
)
sbcie2s.b  |-  B  =  ( F `  W
)
sbcie2s.1  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbcie2s  |-  ( w  =  W  ->  ( [. ( E `  w
)  /  a ]. [. ( F `  w
)  /  b ]. ps 
<-> 
ph ) )
Distinct variable groups:    a, b, w    E, a, b    F, b    W, a, b    ph, a,
b
Allowed substitution hints:    ph( w)    ps( w, a, b)    A( w, a, b)    B( w, a, b)    E( w)    F( w, a)    W( w)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6201 . 2  |-  ( E `
 w )  e. 
_V
2 fvex 6201 . 2  |-  ( F `
 w )  e. 
_V
3 simprl 794 . . . . . 6  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  a  =  ( E `  w ) )
4 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( E `  w )  =  ( E `  W ) )
5 sbcie2s.a . . . . . . . 8  |-  A  =  ( E `  W
)
64, 5syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( E `  w )  =  A )
76adantr 481 . . . . . 6  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  ( E `  w )  =  A )
83, 7eqtrd 2656 . . . . 5  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  a  =  A )
9 simprr 796 . . . . . 6  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  b  =  ( F `  w ) )
10 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( F `  w )  =  ( F `  W ) )
11 sbcie2s.b . . . . . . . 8  |-  B  =  ( F `  W
)
1210, 11syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( F `  w )  =  B )
1312adantr 481 . . . . . 6  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  ( F `  w )  =  B )
149, 13eqtrd 2656 . . . . 5  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  b  =  B )
15 sbcie2s.1 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ph  <->  ps )
)
168, 14, 15syl2anc 693 . . . 4  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  ( ph 
<->  ps ) )
1716bicomd 213 . . 3  |-  ( ( w  =  W  /\  ( a  =  ( E `  w )  /\  b  =  ( F `  w ) ) )  ->  ( ps 
<-> 
ph ) )
1817ex 450 . 2  |-  ( w  =  W  ->  (
( a  =  ( E `  w )  /\  b  =  ( F `  w ) )  ->  ( ps  <->  ph ) ) )
191, 2, 18sbc2iedv 3506 1  |-  ( w  =  W  ->  ( [. ( E `  w
)  /  a ]. [. ( F `  w
)  /  b ]. ps 
<-> 
ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [.wsbc 3435   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by:  istrkgc  25353  istrkgb  25354  istrkge  25356  istrkgl  25357  ishpg  25651  iscgra  25701
  Copyright terms: Public domain W3C validator