Proof of Theorem sbcie3s
| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6203 |
. 2
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) ∈ V) |
| 2 | | fvexd 6203 |
. . 3
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → (𝐹‘𝑤) ∈ V) |
| 3 | | fvexd 6203 |
. . . 4
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → (𝐺‘𝑤) ∈ V) |
| 4 | | simpllr 799 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑤)) |
| 5 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) |
| 6 | 5 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐸‘𝑤) = (𝐸‘𝑊)) |
| 7 | 4, 6 | eqtrd 2656 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = (𝐸‘𝑊)) |
| 8 | | sbcie3s.a |
. . . . . . 7
⊢ 𝐴 = (𝐸‘𝑊) |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑎 = 𝐴) |
| 10 | | simplr 792 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑤)) |
| 11 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) |
| 12 | 11 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐹‘𝑤) = (𝐹‘𝑊)) |
| 13 | 10, 12 | eqtrd 2656 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = (𝐹‘𝑊)) |
| 14 | | sbcie3s.b |
. . . . . . 7
⊢ 𝐵 = (𝐹‘𝑊) |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑏 = 𝐵) |
| 16 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑤)) |
| 17 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝐺‘𝑤) = (𝐺‘𝑊)) |
| 18 | 17 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝐺‘𝑤) = (𝐺‘𝑊)) |
| 19 | 16, 18 | eqtrd 2656 |
. . . . . . 7
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = (𝐺‘𝑊)) |
| 20 | | sbcie3s.c |
. . . . . . 7
⊢ 𝐶 = (𝐺‘𝑊) |
| 21 | 19, 20 | syl6eqr 2674 |
. . . . . 6
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → 𝑐 = 𝐶) |
| 22 | | sbcie3s.1 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶) → (𝜑 ↔ 𝜓)) |
| 23 | 9, 15, 21, 22 | syl3anc 1326 |
. . . . 5
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜑 ↔ 𝜓)) |
| 24 | 23 | bicomd 213 |
. . . 4
⊢ ((((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) ∧ 𝑐 = (𝐺‘𝑤)) → (𝜓 ↔ 𝜑)) |
| 25 | 3, 24 | sbcied 3472 |
. . 3
⊢ (((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) ∧ 𝑏 = (𝐹‘𝑤)) → ([(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
| 26 | 2, 25 | sbcied 3472 |
. 2
⊢ ((𝑤 = 𝑊 ∧ 𝑎 = (𝐸‘𝑤)) → ([(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |
| 27 | 1, 26 | sbcied 3472 |
1
⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏][(𝐺‘𝑤) / 𝑐]𝜓 ↔ 𝜑)) |