| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbi2 | Structured version Visualization version GIF version | ||
| Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbi2 | ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn 2391 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
| 2 | pm2.21 120 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 2 | sbimi 1886 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
| 4 | 1, 3 | sylbir 225 | . 2 ⊢ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
| 5 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 6 | 5 | sbimi 1886 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
| 7 | 4, 6 | ja 173 | 1 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbim 2395 |
| Copyright terms: Public domain | W3C validator |