| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sblbis | Structured version Visualization version GIF version | ||
| Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| sblbis.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sblbis | ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbi 2401 | . 2 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑)) | |
| 2 | sblbis.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 327 | . 2 ⊢ (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| 4 | 1, 3 | bitri 264 | 1 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbie 2408 sb8eu 2503 sb8iota 5858 wl-sb8eut 33359 |
| Copyright terms: Public domain | W3C validator |