| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbid | Structured version Visualization version GIF version | ||
| Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.) |
| Ref | Expression |
|---|---|
| sbbid.1 | ⊢ Ⅎ𝑥𝜑 |
| sbbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbbid | ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | alrimi 2082 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 4 | spsbbi 2402 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbcom3 2411 sbco3 2417 sbcom2 2445 sbal 2462 wl-equsb3 33337 wl-sbcom2d-lem1 33342 wl-sbcom3 33372 |
| Copyright terms: Public domain | W3C validator |