Proof of Theorem sbnf2
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
| 2 | 1 | sb8e 2425 |
. . . . 5
⊢
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| 3 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑧𝜑 |
| 4 | 3 | sb8 2424 |
. . . . 5
⊢
(∀𝑥𝜑 ↔ ∀𝑧[𝑧 / 𝑥]𝜑) |
| 5 | 2, 4 | imbi12i 340 |
. . . 4
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
| 6 | | df-nf 1710 |
. . . 4
⊢
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 7 | | pm11.53v 1906 |
. . . 4
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ↔ (∃𝑦[𝑦 / 𝑥]𝜑 → ∀𝑧[𝑧 / 𝑥]𝜑)) |
| 8 | 5, 6, 7 | 3bitr4i 292 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑)) |
| 9 | 3 | sb8e 2425 |
. . . . . 6
⊢
(∃𝑥𝜑 ↔ ∃𝑧[𝑧 / 𝑥]𝜑) |
| 10 | 1 | sb8 2424 |
. . . . . 6
⊢
(∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 11 | 9, 10 | imbi12i 340 |
. . . . 5
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 12 | | pm11.53v 1906 |
. . . . 5
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ (∃𝑧[𝑧 / 𝑥]𝜑 → ∀𝑦[𝑦 / 𝑥]𝜑)) |
| 13 | 11, 12 | bitr4i 267 |
. . . 4
⊢
((∃𝑥𝜑 → ∀𝑥𝜑) ↔ ∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 14 | | alcom 2037 |
. . . 4
⊢
(∀𝑧∀𝑦([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 15 | 6, 13, 14 | 3bitri 286 |
. . 3
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑)) |
| 16 | 8, 15 | anbi12i 733 |
. 2
⊢
((Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 17 | | pm4.24 675 |
. 2
⊢
(Ⅎ𝑥𝜑 ↔ (Ⅎ𝑥𝜑 ∧ Ⅎ𝑥𝜑)) |
| 18 | | 2albiim 1817 |
. 2
⊢
(∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ (∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) ∧ ∀𝑦∀𝑧([𝑧 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜑))) |
| 19 | 16, 17, 18 | 3bitr4i 292 |
1
⊢
(Ⅎ𝑥𝜑 ↔ ∀𝑦∀𝑧([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |