| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbnf2 | Structured version Visualization version Unicode version | ||
| Description: Two ways of expressing
" |
| Ref | Expression |
|---|---|
| sbnf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . . 6
| |
| 2 | 1 | sb8e 2425 |
. . . . 5
|
| 3 | nfv 1843 |
. . . . . 6
| |
| 4 | 3 | sb8 2424 |
. . . . 5
|
| 5 | 2, 4 | imbi12i 340 |
. . . 4
|
| 6 | df-nf 1710 |
. . . 4
| |
| 7 | pm11.53v 1906 |
. . . 4
| |
| 8 | 5, 6, 7 | 3bitr4i 292 |
. . 3
|
| 9 | 3 | sb8e 2425 |
. . . . . 6
|
| 10 | 1 | sb8 2424 |
. . . . . 6
|
| 11 | 9, 10 | imbi12i 340 |
. . . . 5
|
| 12 | pm11.53v 1906 |
. . . . 5
| |
| 13 | 11, 12 | bitr4i 267 |
. . . 4
|
| 14 | alcom 2037 |
. . . 4
| |
| 15 | 6, 13, 14 | 3bitri 286 |
. . 3
|
| 16 | 8, 15 | anbi12i 733 |
. 2
|
| 17 | pm4.24 675 |
. 2
| |
| 18 | 2albiim 1817 |
. 2
| |
| 19 | 16, 17, 18 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbnfc2 4007 nfnid 4897 |
| Copyright terms: Public domain | W3C validator |