![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbthlem3 | Structured version Visualization version GIF version |
Description: Lemma for sbth 8080. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | ⊢ 𝐴 ∈ V |
sbthlem.2 | ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
Ref | Expression |
---|---|
sbthlem3 | ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | sbthlem.2 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | |
3 | 1, 2 | sbthlem2 8071 | . . . . 5 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) |
4 | 1, 2 | sbthlem1 8070 | . . . . 5 ⊢ ∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
5 | 3, 4 | jctil 560 | . . . 4 ⊢ (ran 𝑔 ⊆ 𝐴 → (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) |
6 | eqss 3618 | . . . 4 ⊢ (∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) | |
7 | 5, 6 | sylibr 224 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → ∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
8 | 7 | difeq2d 3728 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ ∪ 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))))) |
9 | imassrn 5477 | . . . 4 ⊢ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 | |
10 | sstr2 3610 | . . . 4 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 → (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴)) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴) |
12 | dfss4 3858 | . . 3 ⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | |
13 | 11, 12 | sylib 208 | . 2 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
14 | 8, 13 | eqtr2d 2657 | 1 ⊢ (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ∪ cuni 4436 ran crn 5115 “ cima 5117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: sbthlem4 8073 sbthlem5 8074 |
Copyright terms: Public domain | W3C validator |