MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl2im Structured version   Visualization version   GIF version

Theorem simpl2im 658
Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
Hypotheses
Ref Expression
simpl2im.1 (𝜑 → (𝜓𝜒))
simpl2im.2 (𝜒𝜃)
Assertion
Ref Expression
simpl2im (𝜑𝜃)

Proof of Theorem simpl2im
StepHypRef Expression
1 simpl2im.1 . 2 (𝜑 → (𝜓𝜒))
2 simpr 477 . 2 ((𝜓𝜒) → 𝜒)
3 simpl2im.2 . 2 (𝜒𝜃)
41, 2, 33syl 18 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  dvdsaddre2b  15029  ndvdssub  15133  nbgrcl  26233  usgr2trlncrct  26698  wwlksnextproplem3  26806  erclwwlksnsym  26947  erclwwlksntr  26948  numclwlk2lem2f  27236  gneispaceel  38441  gneispacess  38443
  Copyright terms: Public domain W3C validator