| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl2im | Structured version Visualization version GIF version | ||
| Description: Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.) |
| Ref | Expression |
|---|---|
| simpl2im.1 | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| simpl2im.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| simpl2im | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2im.1 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | |
| 2 | simpr 477 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | simpl2im.2 | . 2 ⊢ (𝜒 → 𝜃) | |
| 4 | 1, 2, 3 | 3syl 18 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: dvdsaddre2b 15029 ndvdssub 15133 nbgrcl 26233 usgr2trlncrct 26698 wwlksnextproplem3 26806 erclwwlksnsym 26947 erclwwlksntr 26948 numclwlk2lem2f 27236 gneispaceel 38441 gneispacess 38443 |
| Copyright terms: Public domain | W3C validator |