MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksntr Structured version   Visualization version   GIF version

Theorem erclwwlksntr 26948
Description: is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlksn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlksn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksntr ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊   𝑧,𝑛,𝑡,𝑢,𝑦,𝑥
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝑁(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem erclwwlksntr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . 2 𝑥 ∈ V
2 vex 3203 . 2 𝑦 ∈ V
3 vex 3203 . 2 𝑧 ∈ V
4 erclwwlksn.w . . . . . 6 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlksn.r . . . . . 6 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5erclwwlksneqlen 26945 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (#‘𝑥) = (#‘𝑦)))
763adant3 1081 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (#‘𝑥) = (#‘𝑦)))
84, 5erclwwlksneqlen 26945 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (#‘𝑦) = (#‘𝑧)))
983adant1 1079 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (#‘𝑦) = (#‘𝑧)))
104, 5erclwwlksneq 26944 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
11103adant1 1079 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
124, 5erclwwlksneq 26944 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
13123adant3 1081 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
14 simpr1 1067 . . . . . . . . . . . . . . 15 (((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥𝑊)
15 simplr2 1104 . . . . . . . . . . . . . . 15 (((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧𝑊)
16 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚))
1716eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚)))
1817cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚))
19 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
2019eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘)))
2120cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘))
22 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 26885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑧) = 𝑁))
24 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((#‘𝑧) = 𝑁𝑁 = (#‘𝑧))
2524biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((#‘𝑧) = 𝑁𝑁 = (#‘𝑧))
2623, 25simpl2im 658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (#‘𝑧))
2726, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧𝑊𝑁 = (#‘𝑧))
2827ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → 𝑁 = (#‘𝑧))
2923simpld 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
3029, 4eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧𝑊𝑧 ∈ Word (Vtx‘𝐺))
3130ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺))
3231adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → 𝑧 ∈ Word (Vtx‘𝐺))
33 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))
3432, 33cshwcsh2id 13574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
35 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 = (#‘𝑧) → (0...𝑁) = (0...(#‘𝑧)))
36 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((#‘𝑧) = (#‘𝑦) → (0...(#‘𝑧)) = (0...(#‘𝑦)))
3736eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((#‘𝑦) = (#‘𝑧) → (0...(#‘𝑧)) = (0...(#‘𝑦)))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → (0...(#‘𝑧)) = (0...(#‘𝑦)))
3938adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (0...(#‘𝑧)) = (0...(#‘𝑦)))
4035, 39sylan9eq 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (0...𝑁) = (0...(#‘𝑦)))
4140eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(#‘𝑦))))
4241anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))))
4335eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (#‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(#‘𝑧))))
4443anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (#‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4642, 45anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(#‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))))
4735rexeqdv 3145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (#‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(#‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4934, 46, 483imtr4d 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 = (#‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5028, 49mpancom 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5150exp5l 646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5251imp41 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5352rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5453ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5554rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5621, 55syl7bi 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5718, 56syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5857exp31 630 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑊𝑦𝑊) → (𝑧𝑊 → (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → (𝑧𝑊 → (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
6059impcom 446 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
61603adant1 1079 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
6261impcom 446 . . . . . . . . . . . . . . . . . 18 ((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6362com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
64633impia 1261 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
6564impcom 446 . . . . . . . . . . . . . . 15 (((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))
6614, 15, 653jca 1242 . . . . . . . . . . . . . 14 (((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
674, 5erclwwlksneq 26944 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
68673adant2 1080 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6966, 68syl5ibrcom 237 . . . . . . . . . . . . 13 (((((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))
7069exp31 630 . . . . . . . . . . . 12 (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))))
7170com24 95 . . . . . . . . . . 11 (((#‘𝑦) = (#‘𝑧) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧))))
7271ex 450 . . . . . . . . . 10 ((#‘𝑦) = (#‘𝑧) → ((#‘𝑥) = (#‘𝑦) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7372com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑦) = (#‘𝑧) → ((#‘𝑥) = (#‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7413, 73sylbid 230 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((#‘𝑦) = (#‘𝑧) → ((#‘𝑥) = (#‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7574com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((#‘𝑦) = (#‘𝑧) → ((#‘𝑥) = (#‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
7611, 75sylbid 230 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((#‘𝑦) = (#‘𝑧) → ((#‘𝑥) = (#‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
779, 76mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((#‘𝑥) = (#‘𝑦) → (𝑥 𝑦𝑥 𝑧))))
7877com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((#‘𝑥) = (#‘𝑦) → (𝑦 𝑧𝑥 𝑧))))
797, 78mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (𝑦 𝑧𝑥 𝑧)))
8079impd 447 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
811, 2, 3, 80mp3an 1424 1 ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200   class class class wbr 4653  {copab 4712  cfv 5888  (class class class)co 6650  0cc0 9936  ...cfz 12326  #chash 13117  Word cword 13291   cyclShift ccsh 13534  Vtxcvtx 25874   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-csh 13535  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  erclwwlksn  26949
  Copyright terms: Public domain W3C validator