MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f 27236
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
numclwwlk.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
2 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ)
41, 3nnaddcld 11067 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℕ)
54anim2i 593 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
653adant1 1079 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ))
7 numclwwlk.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
8 numclwwlk.q . . . . . . . . 9 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ ( lastS ‘𝑤) ≠ 𝑣)})
9 numclwwlk.f . . . . . . . . 9 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})
10 numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) ≠ (𝑤‘0))})
117, 8, 9, 10numclwwlkovh 27234 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
1211eleq2d 2687 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
136, 12syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
14 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1514eqeq1d 2624 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
16 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1716, 14neeq12d 2855 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1815, 17anbi12d 747 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1918elrab 3363 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
2013, 19syl6bb 276 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
21 peano2nn 11032 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
22 nnz 11399 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
23 2z 11409 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
2423a1i 11 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 2 ∈ ℤ)
2522, 24zaddcld 11486 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
26 uzid 11702 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2725, 26syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
28 nncn 11028 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
29 1cnd 10056 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3028, 29, 29addassd 10062 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
31 1p1e2 11134 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
3231a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
3332oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3430, 33eqtrd 2656 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3534fveq2d 6195 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3627, 35eleqtrrd 2704 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3721, 36jca 554 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
38373ad2ant3 1084 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3938adantr 481 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
40 simprl 794 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺))
41 wwlksubclwwlks 26925 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4239, 40, 41sylc 65 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺))
43 pncan1 10454 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4443eqcomd 2628 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4528, 44syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4645oveq1d 6665 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = (((𝑁 + 1) − 1) WWalksN 𝐺))
4746eleq2d 2687 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
48473ad2ant3 1084 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4948adantr 481 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
5042, 49mpbird 247 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺))
517clwwlknbp0 26884 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → ((𝐺 ∈ V ∧ (𝑁 + 2) ∈ ℕ) ∧ (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2))))
52 simprl 794 . . . . . . . . . . . . . . . 16 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
53 simprr 796 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
54 nnnn0 11299 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
55 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
57 nnre 11027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5857lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
59 elfz2nn0 12431 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
6054, 56, 58, 59syl3anbrc 1246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
61 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
62 addsubass 10291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
63 2m1e1 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6463oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6562, 64syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6628, 61, 29, 65syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6766oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6860, 67eleqtrrd 2704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
69 elfzp1b 12417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7022, 25, 69syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7168, 70mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
7271adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
73 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((#‘𝑥) = (𝑁 + 2) → (1...(#‘𝑥)) = (1...(𝑁 + 2)))
7473eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((#‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7574ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(#‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7672, 75mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(#‘𝑥)))
77 swrd0fv0 13440 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7853, 76, 77syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7978ex 450 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8079adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
8180impcom 446 . . . . . . . . . . . . . . . . . . 19 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
8281ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
83 simpl 473 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8482, 83eqtrd 2656 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋)
85 swrd0fvlsw 13443 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(#‘𝑥))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8653, 76, 85syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8728, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8828, 61pncand 10393 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8987, 88eqtr4d 2659 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
9089fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9190adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
9286, 91eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9392ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9594impcom 446 . . . . . . . . . . . . . . . . . . . . . . 23 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9695neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . 22 ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9796biimpcd 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9897adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9998impcom 446 . . . . . . . . . . . . . . . . . . 19 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
10099adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
101 neeq2 2857 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
102101eqcoms 2630 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
103102adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
104100, 103mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)
10584, 104jca 554 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
10652, 105mpancom 703 . . . . . . . . . . . . . . 15 (((((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
107106exp31 630 . . . . . . . . . . . . . 14 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
108107com23 86 . . . . . . . . . . . . 13 (((#‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
109108ancoms 469 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11051, 109simpl2im 658 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
111110imp 445 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
112111com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
1131123adant1 1079 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
114113imp 445 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
11550, 114jca 554 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
116115ex 450 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11720, 116sylbid 230 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
118117imp 445 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
119 3simpc 1060 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
120119adantr 481 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
1217, 8numclwwlkovq 27232 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
122120, 121syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)})
123122eleq2d 2687 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)}))
124 fveq1 6190 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (𝑤‘0) = ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0))
125124eqeq1d 2624 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋))
126 fveq2 6191 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ( lastS ‘𝑤) = ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
127126neeq1d 2853 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (( lastS ‘𝑤) ≠ 𝑋 ↔ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
128125, 127anbi12d 747 . . . . 5 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋) ↔ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
129128elrab 3363 . . . 4 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ ( lastS ‘𝑤) ≠ 𝑋)} ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
130123, 129syl6bb 276 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ ( lastS ‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
131118, 130mpbird 247 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
132 numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
133131, 132fmptd 6385 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874   WWalksN cwwlksn 26718   ClWWalksN cclwwlksn 26876   FriendGraph cfrgr 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwlk2lem2f1o  27238
  Copyright terms: Public domain W3C validator