| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sscon34b | Structured version Visualization version GIF version | ||
| Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 3751. (Contributed by RP, 3-Jun-2021.) |
| Ref | Expression |
|---|---|
| sscon34b | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscon 3744 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | |
| 2 | sscon 3744 | . . 3 ⊢ ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → (𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵))) | |
| 3 | dfss4 3858 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) | |
| 4 | 3 | biimpi 206 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
| 5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐴)) = 𝐴) |
| 6 | dfss4 3858 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) | |
| 7 | 6 | biimpi 206 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
| 8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐶 ∖ (𝐶 ∖ 𝐵)) = 𝐵) |
| 9 | 5, 8 | sseq12d 3634 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ (𝐶 ∖ 𝐴)) ⊆ (𝐶 ∖ (𝐶 ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵)) |
| 10 | 2, 9 | syl5ib 234 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴) → 𝐴 ⊆ 𝐵)) |
| 11 | 1, 10 | impbid2 216 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∖ cdif 3571 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 |
| This theorem is referenced by: rcompleq 38318 ntrclsss 38361 ntrclsiso 38365 ntrclsk2 38366 ntrclsk3 38368 |
| Copyright terms: Public domain | W3C validator |