![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rcompleq | Structured version Visualization version GIF version |
Description: Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 3752. (Contributed by RP, 10-Jun-2021.) |
Ref | Expression |
---|---|
rcompleq | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵)) | |
2 | sscon34b 38317 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) | |
3 | 2 | ancoms 469 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐵 ⊆ 𝐴 ↔ (𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵))) |
4 | sscon34b 38317 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
5 | 3, 4 | anbi12d 747 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
6 | 1, 5 | syl5bb 272 | . 2 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)))) |
7 | eqss 3618 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
8 | eqss 3618 | . 2 ⊢ ((𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) ↔ ((𝐶 ∖ 𝐴) ⊆ (𝐶 ∖ 𝐵) ∧ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | |
9 | 6, 7, 8 | 3bitr4g 303 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∖ cdif 3571 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 |
This theorem is referenced by: ntrclsfveq1 38358 ntrclsfveq2 38359 ntrclskb 38367 ntrclsk13 38369 ntrclsk4 38370 |
Copyright terms: Public domain | W3C validator |