Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sscon34b Structured version   Visualization version   Unicode version

Theorem sscon34b 38317
Description: Relative complementation reverses inclusion of subclasses. Relativized version of complss 3751. (Contributed by RP, 3-Jun-2021.)
Assertion
Ref Expression
sscon34b  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  C_  B  <->  ( C  \  B ) 
C_  ( C  \  A ) ) )

Proof of Theorem sscon34b
StepHypRef Expression
1 sscon 3744 . 2  |-  ( A 
C_  B  ->  ( C  \  B )  C_  ( C  \  A ) )
2 sscon 3744 . . 3  |-  ( ( C  \  B ) 
C_  ( C  \  A )  ->  ( C  \  ( C  \  A ) )  C_  ( C  \  ( C  \  B ) ) )
3 dfss4 3858 . . . . . 6  |-  ( A 
C_  C  <->  ( C  \  ( C  \  A
) )  =  A )
43biimpi 206 . . . . 5  |-  ( A 
C_  C  ->  ( C  \  ( C  \  A ) )  =  A )
54adantr 481 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( C  \  ( C  \  A ) )  =  A )
6 dfss4 3858 . . . . . 6  |-  ( B 
C_  C  <->  ( C  \  ( C  \  B
) )  =  B )
76biimpi 206 . . . . 5  |-  ( B 
C_  C  ->  ( C  \  ( C  \  B ) )  =  B )
87adantl 482 . . . 4  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( C  \  ( C  \  B ) )  =  B )
95, 8sseq12d 3634 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \ 
( C  \  A
) )  C_  ( C  \  ( C  \  B ) )  <->  A  C_  B
) )
102, 9syl5ib 234 . 2  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( ( C  \  B )  C_  ( C  \  A )  ->  A  C_  B ) )
111, 10impbid2 216 1  |-  ( ( A  C_  C  /\  B  C_  C )  -> 
( A  C_  B  <->  ( C  \  B ) 
C_  ( C  \  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    \ cdif 3571    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588
This theorem is referenced by:  rcompleq  38318  ntrclsss  38361  ntrclsiso  38365  ntrclsk2  38366  ntrclsk3  38368
  Copyright terms: Public domain W3C validator