| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif2d | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| ssdif2d.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| ssdif2d | ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif2d.2 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) | |
| 2 | 1 | sscond 3747 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐴 ∖ 𝐶)) |
| 3 | ssdifd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 4 | 3 | ssdifd 3746 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| 5 | 2, 4 | sstrd 3613 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3571 ⊆ wss 3574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 |
| This theorem is referenced by: mblfinlem3 33448 mblfinlem4 33449 |
| Copyright terms: Public domain | W3C validator |