| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raldifb | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| Ref | Expression |
|---|---|
| raldifb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 462 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑))) | |
| 2 | df-nel 2898 | . . . . . 6 ⊢ (𝑥 ∉ 𝐵 ↔ ¬ 𝑥 ∈ 𝐵) | |
| 3 | 2 | anbi2i 730 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 4 | eldif 3584 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 267 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 6 | 5 | imbi1i 339 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
| 7 | 1, 6 | bitr3i 266 | . 2 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
| 8 | 7 | ralbii2 2978 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ∉ wnel 2897 ∀wral 2912 ∖ cdif 3571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-v 3202 df-dif 3577 |
| This theorem is referenced by: raldifsnb 4325 coprmproddvdslem 15376 poimirlem26 33435 aacllem 42547 |
| Copyright terms: Public domain | W3C validator |