MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifeq0 Structured version   Visualization version   GIF version

Theorem ssdifeq0 4051
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3822 . . 3 (𝐴𝐴) = 𝐴
2 ssdifin0 4050 . . 3 (𝐴 ⊆ (𝐵𝐴) → (𝐴𝐴) = ∅)
31, 2syl5eqr 2670 . 2 (𝐴 ⊆ (𝐵𝐴) → 𝐴 = ∅)
4 0ss 3972 . . 3 ∅ ⊆ (𝐵 ∖ ∅)
5 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
6 difeq2 3722 . . . 4 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
75, 6sseq12d 3634 . . 3 (𝐴 = ∅ → (𝐴 ⊆ (𝐵𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅)))
84, 7mpbiri 248 . 2 (𝐴 = ∅ → 𝐴 ⊆ (𝐵𝐴))
93, 8impbii 199 1 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  cdif 3571  cin 3573  wss 3574  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  disjdifprg  29388  measxun2  30273  measssd  30278  pmeasmono  30386
  Copyright terms: Public domain W3C validator