| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifeq0 | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| Ref | Expression |
|---|---|
| ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 3822 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 2 | ssdifin0 4050 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | syl5eqr 2670 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
| 4 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
| 5 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 6 | difeq2 3722 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
| 7 | 5, 6 | sseq12d 3634 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
| 8 | 4, 7 | mpbiri 248 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
| 9 | 3, 8 | impbii 199 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 = wceq 1483 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: disjdifprg 29388 measxun2 30273 measssd 30278 pmeasmono 30386 |
| Copyright terms: Public domain | W3C validator |